MODERN ANALYTICAL METHODS IN HEAT TRANSFER

I. J. Kumar UDC 536.24

A review is made of certain analytical methods used in heat transfer. Singular perturbation
methods, asymptotic methods, and methods associated with the solution of integral equations
are considered for the purpose of solving problems in various types of heat transfer.

In the excellent monographs [1-7], the achievements in the various fields of heat transfer are con-
sidered from the physical point of view in a systematic and unique way. An attempt is made in this present
review to generalize these achievements from the point of view of mathematical methods, It should be em-
phasized that some of the most important methods in the current literature on heat transfer are still in the
process of development and examples from the literature are quoted frequently in order to show the virtue
of the method in those branches of heat transfer where it can be considered as a potential means of obtain-
ing a solution, Therefore, in considering a gpecific method, it is desirable to cite examples from the cur-
rent literature based on physical considerations. We also try to cite, wherever possible, references to
fundamental works connected with the development of methods, for which the author does not make any
claims on the completeness of the review in view of the enormous volume of existing literature. The cri-
teria for selecting examples is to show how a specific method has been applied in problems associated with
the various types of heat transfer. However, in view of their being generally well known, there will be no
need to refer in this review to integral methods, to which the review [8] is devoted, or to a description of
their application to nonsteady-state heat transfer [9]. In a similar way, there is no need to refer to clas-
sical methods of operational calculus, which is used widely in classical works [10-12]. We shall consider
in some detail perturbation methods, asymptotic methods, and methods associated with the solution of in-
tegral equations.

1. Perturbation Methods

Perturbation methods consist mainly of the series expansion of dependent variables with respect to
powers of known value, assumed to be small., When this small quantity is a parameter, the method is known
as "parametric perturbation® and if it is a coordinate the method is called "coordinate perturbation." As-
suming that this small quantity is equal to g, the solution of the differential equation for € — 0 is a solution
of zero order. When the expansion is inserted in a differential equation and identical powers of € are equa-
ted, we obtain a system of differential equations for solutions of successive orders. The series obtained
is convergent in the asymptotic sense [96] and if the scheme mentioned above is suitable, then it is called
a regular perturbation. This method was used in a number of problems and has led to very useful results.

However, in many problems the ratio of successive terms ceases to be small and the system of regu-
lar perturbation becomes untenable in a certain region of the flow field. Thus, it is impossible to obtain
a valid solution over the whole flow field by the method of regular perturbation. These problems are known
as problems of singular perturbation.

Sometimes the situation described above arises because of the presence of singularity in a solution of
zero order at a point or on a line in the region of investigation. This singularity becomes greater accord-
ing as the order of the solution increases. A procedure for solving such problems by the perturbation meth-
od was proposed in [13], according to which a dependent variable v(x, € and an independent variable x are
expanded in powers of low value in a series of the form:
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where x replaces the initially independent variables x, and v(g)(x) is simply a solution of zero order of the
classical method of perturbation with y instead of x. The method is describedin [14] with various applica-
tions, where the author calls it the Poincairé — Lighthill~Kuo method, the the PLK method, because Kuo
applied it to supersonic boundary layers. The method is frequently called the method of deformed coordi-
nates (see, for example, Chapter VI of [17] where many examples are given of the application of this meth-
od in aerodynamics). Lighthill [18] applied this method to conical shock waves in a steady-state supersonic
flow. In [19, 20] it is applied to a supersonic streamline flow around a profile. The limitation of this meth-
od is shown by Lighthill [21] himself, who finally recommended the use of the method only in hyperbolic
equations. This method is used in [22, 23] for formulating the correctness of the solution to the problem
of temperature distribution in floating bodies using the integral method by Morris [24] to obtain a uniformly
convergent solution of laminar convective flow in a heated vertical tube rotating round a parallel axis.

Olstad [25] considered the problem of radiative flow at the point of interruption as a perturbation oc-
curring without emission. He found that near the wall, the method of regular perturbation is inapplicable
and he used the PLK method for obtaining a homogeneous solution,

if the leading derivative of the differential equation contains a small parameter, then the PLK method
is inapplicable. The main difficulty in these problems appears because when & — 0 the order of the equa-
tion is reduced and in this way certain boundary conditions may not be satisfied. A method was developed
in [26-29], known under the name of "method of combined asymptotic expansions."

Suppose v(x, € is the solution of the problem of singular perturbation, The general asymptotic ex-
pansion in powers of € when &€ — 0 is called an external expansion for a fixed value of x > 0. This expan-
sion is valid over the range v = x = 1 with y independent of &, The expansion can also be fulfilled for y = x
=1, even if v depends on & and approaches zero, when & — 0 for the condition y/e — « (Erdelyi [30]). Sup-
pose the external expansion be denoted by v!. In order to obtain the internal expansion, the expanding trans-
formation x = z¢ is introduced. The asumptotic expansion v(z&, € for € — 0 when z = 0 is fixed, is called
the internal expansion and is denoted by v', This expansion is valid for 0 = (z = x/e) = A;. It was shown
by examples that the expansion is fulfilled in the region x/e = O(1). Thus, the internal and external expan-
sions have a common region of applicability and in this region we can write the internal expansion of the ex-
ternal expansion v’, i.e., (v)i, and the external expansion of the internal expansion, i.e., (vi)o. The asymp-
totic principle of combination [17] establishes that

the m~th term of the internal expansion (n-th term of the external expansion) = n~th )
term of the external expansion (m-th term of the internal expansion).
Here, m and n are any two whole numbers. In practice, m is usually chosen as nor asn + 1. The unknown
constants in v? and v! are determined by the congruence of this pair in the common region. Sometimes,
combined expansions vC are formed in order to obtain a solution whichis homogeneousover the whole range
0 =x=1. vC can be formed either according to the law of additivity

of = UO + Ui _— (UO)i, (4a)

»

or according to the law of multiplicativity
o = 0 O (), (4b)

as discussed in detail in [17].

Lam [31] considered the internal and external expansion of the boundary layer at the walls of super-
sonic nozzles in the case of a special relation between the interaction of heat transfer and the boundary
layers with very favorable pressure gradients. This method was used in [32] to obtain a uniformly converg-
ing solution of laminar flow in a homogeneous porous channel with a large (air) injection, The method of
extension of internal coordinates is used in [33] in order to obtain the internal solution of the problem of
natural convection over a flame, Mueller and Malmuth [34] considered the temperature distribution in a
radiating heat shield with a random aerodynamic source and longitudinal thermal conductivity., Whilst the
problem for small radiation reduces to the problem of a regular perturbation, the problem for low conduc-
tivity is a problem of singular perturbation for which the method of combined asymptotic expansions was
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used. It is shown in [35] that the solution of the dimensionless equation of a boundary layer describing the
free convection of a radiating (sulfur) liquid is itself a problem of singular perturbation. Burgraff [36]
considered viscous flow of a transparent layer as an approximated model of a shock layer. In the case of
constant density, he obtained a precise solution and explained the interaction between the viscous and non-
viscous regions by considering the asymptotic expansion of the above-mentioned solution with respect to
values of the Reynolds number. Then he converted to the construction of a solution of the general case
by means of the method of combined asymptotic expansions, Inger [37] applied this method to the analysis
of dissociating boundary layers close to equilibrium. We shall discuss this paper is some detail in order
to illustrate the method. )

Let us consider the flow in 2 boundary layer close to equilibrium of a dissociating diatomic gas along
an impermeable axisymmetrical or two-dimensional body which is either adiabatic or has a uniform sur-
face temperature,

If we introduce the variables
y

N =Pyt s (26)72 | (plp,) dy, ()
0
§=C [ouom,rddx, (6)
0
G ,
U=u, a = uef (7)

and assume that Pr = 1, Le = 1, and py = const, we can write the equations of momentum, inertia, and
atomic concentration in the form

4" =0, (8)
O |\ Po 0o 9% _ Feriy
fan +0n2 2%f 3 &R (@ —C;—C,T), (9
0H o*H oH
—— e — '——=0.
i o+ = 2t f % (10)

The total enthalpy H is related with the static temperature and atomic mass fraction « by the relation
H=cpT+ochD—i——21— u (f'2. (11)
it should be noted that T — ¢ for a chemically frozen flow and T’ — « for total equilibrium. The boundary
conditions have the form
f {o0) =1, %(E, o) =a,=C, + C,T,,
TE o)=T, (12)

H(g’ oo)_—_He=cp Te +GBRD “r“_;‘ uz'

At the surface
FO)=F(0) =0, (13)

T (& oo) =T, = const or i’i;_gﬂ —o, (14)
M

HE, 0)=c,T,+hpa(t, 0).
For a completely catalytic wall we also have
a(§ 0)=uagq w=C,+C,T,. (15)
Thus, in Eq. (9) for T — « (1/T — 0) the leading derivative vanishes and therefore the problem is a prob-

lem of singular perturbation, We can write Eq. (9) and (10) by means of the new independent variables «,
G, and "

DG

FO% 47 oy e (&—m)—wmwaqu_ (16)
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G, PG 3G _
fgn‘"f"&]—;—%f % 0 (17

with the boundary conditions

ok, o)=0, (18)
o (&, 0) =0 (for a catalytic wall), (19)
noting that the temperature profile can be represented as
T ) =Tro() +¢5 (Ghp—ahp). (20)
It follows from Eq. (17), therefore, that
G, n) =0. (21

We consider Eq. (16) for a flow approaching equilibrium, where I' is very large. An internal expansion can
be assumed, therefore, for

W=D (14 DG = 3 &l () XL (22
N=}

Substituting Eq. (22) in Eq. (16), using Eq. (17) and collecting terms with identical powers, we find the fol-
lowing equations defining the perturbation functions

aly (n) = fosg+ ag= azg(0) [ (/AR (232)
at M) = F@n) + @) +2RF o, (23b)
oy () = Faiy—n)’ + @w—0) ' +2R (N —1) afy—1), (23c)

where Eq. (20) was used to simplify the right-hand side of Eq. (23a), Although Eq, (22) satisfies the ex-
ternal boundary condition (18), it does not satisfy the internal boundary condition (19). Therefore, we shall
attempt to obtain a solution in the vicinity of the wall in terms of the compression by means of the variable
Q. It follows from Eq. (16) that the corresponding compression can be obtained if we put Q = (I“/zn),

In order to obtain the internal solution in terms of the new independent variable, we first of all re-
write Eq. (16) in terms of the new independent variable Q = 1"1/ ). Thus, we obtain the equation

o |, AQ? (l ZBQ") do  2EAQ ( SBQ3) Ja

(;Q? -+ 21.‘3/2 - AT® FQ-' - F3/2 ] _AFS/Z -bg
_&[=_ DG 0) DQr” 3G, 0) (&%Qr] 9
=t .[“ +D 14D  an vl @4

which is satisfied by the boundary conditions at the wall (19). Equation (24) is now solved for condition (19).
If we assume that

@ 1
a= Y ahnE QU (25)
N=I1

then substitution of the series (25) in Eq. (24) gives a sequence of linear second-order differential equations,
defining the internal perturbation functions. Solving these equations, we obtain

1
—_— =R
% (& Q = Eysinh ¢* Q) (262)
— —l—‘R ' _LR
2@ (& Q) = E;sinh(E” Q)+ E "ugq(0) [I—exp(—E* Q) (26D)
i . ;—R
a@ (8 Q) = Egsinh(E® Q) (26c¢)
where Ey, E,, ... are arbitrary constants. Now we match this internal solution with the external solution

by means of the principle of asymptotic combination which is given by the rule (3).

From Eq. (21), (22), and (23) we have the external solution for the atomic concentration

a® (& ) = [ozq ONTED)] [ A+ 0@, (27)
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which, rewritten in terms of the internal variable Q and expanded for large values of I using the fact that
fm(0) = 0, assumes the form

@' (Q, &) = agg(0)(TER) ™+ 0 (% X). (28)
From Egs. (25), (26a), (26b), and (26c), the corresponding internal solution is
_l__R ..l_R
@ (Q, &) = E,I?sinh (8% Q) + E,T'sinh (£° Q)

1

4+ T R (0) [1— exp (— ETRQ)] + E,Tsinh (¢ R0+ 0T, (29)

which, in terms of the internal variable for large values of I" is expressed as

1, L
@ 8= sinh (o™ 1) ST & Ew 0 (30)
I
(TER 0 (0) [1— exp(—5 7 @), En=0.

Neglecting exponentially small terms, Eq. (28) and (30) will be combined if E; = E, = Eyy = 0. The final
internal solution for a catalytic wall is:

aly (Q, &) =0, (31a)
_. " L
@y (Q &) = azg@) g R[1—exp(— & Q). (31b)
afy (Q, &) =0. (31c)

Knowing that f is the solution of the Blasius equation, we determined the uniformly correct solution
comprising Eq. (23) and (31).

Ellinwood [38] used a pair of combined asymptotic expansions in order to obtain solutions for super-
sonic flows passing through shock layers formed around a blunt, narrow cone or a wedge. In [39] the prob-
lem of heat transfer from a heated stationary sphere in a fluctuating flow is studied.

The solution of the boundary-layer equations for large values of the pressure gradient parameter gives
one further example of the problem of singular perturbation. This was mentioned by Coles [40] and later
by Bekweth and Cohen [41]. For a detailed discussion, see Lagerstrom [42] and Dewey and Gross [43].

The flow in a laminar two-dimensional boundary layer with radiation is analyzed by Novotany and Yang
[44]. They assumed small temperature differences inside the flow field., By considering an optically thin
approximation they ensountered the problem of singular perturbation of the energy equation, This problem
was analyzed by combined asymptotic expansions with respect to a parameter defining the optical thickness
of the gas.

Fendell [45] used the same method in solving the problem of laminar natural convection around an iso-
thermally heated sphere for a small Grasshof number, The problem of dynamically similar compressed
boundary layers with a large injection and with a suitable pressure gradient was considered by Kubota and
Fernandez [46], who obtained combined asymptotic expansions for each of two layers: a) the inner layer,
adjacent to the surface where viscosity is important and b) the outside boundary layer at which transfer
takes place from the inside layer to the outside flow. Starting from the method developed previously in
[34], Mueller and Malmuth [47] discussed the approximate solution for thermal conductivity and radiating
shells relating to a discrete solar flow, Kueken [48] applied this method to a free-convection boundary
layer for the case when the Prandtl number tends to zero.

Vagil'eva [49] justified the method of finding the equilibrium solutions of a system of differential equa-
tions containing a small parameter as the leading derivative. Using this method, Varma and Murgai [50]
obtained an analytic solution of the problem of natural convection above jets containing solid particles, A
detailed list of investigations by Soviet mathematicians and scientists into the mathematical theory of per-
turbation methods is given in [49].

In the papers mentioned below, some basic theories were discussed of singular perturbation methods,
which are of definite interest for application. The following problem is investigated in [51]: we consider
the general differential equation of m-th order, depending on the parameter € in such a way that its order
has been reduced to n when € — 0. Although the starting equation includes m boundary conditions, the

1211



derived equation may contain only n boundary conditions. Thus, in the limit € — 0, m — n conditions are
lost but we wish to determine how each of them is lost. The conditions were obtained which guarantee that
the solution v(x, £) exists and also is a homogeneous asymptotic expansion,

This method was recently critically examined by Frankel [52], where satisfactory conditions are
strictly substantiated for which the van Dyke principle of asymptotic combination [17] is valid. He applied
this method to a normal differential equation with a reversal point and showed that the bounded principle of
combination is valid, even when it is applied to trimmed internal and external expansions which do not span
the order of the terms necessary for combination,

The method of multiple scales is developed by Cochran {53] and Mahony [54]. In their solutions the
sensitive coordinate was taken up by a pair of coordinates, thus increasing the number of independent vari-
ables. It was then assumed that the general asymptotic expansion is homogeneous over the entire region.
Consequently, the need for combination was removed. A similar idea was put forward in [55]. These con-
siderations were developed in [56]. A similar method, called the method of intermediate limits, was de-
scribed by Kaplun [29, 57]. Other important references are [58-68].

Perturbation methods are only partially applicable in elliptical flow problems.

In the case of problems in which the expansion of a power series is represented in a differential equa-
tion, it is found that an equation of n-th order contains terms of (n + 1)-th order. This case is contrary to
the case of parabolic equations, where equations of n-th order contain terms of up to the n-th order, as in
the case of the Blasius expansion in boundary-layer theory. It is important, therefore, somehow to ter-
minate the series at terms of defined order, so as to match the number of unknowns with the number of
equations. This method is sometimes called the method of series termination [75]. Swigart [69] and Bazzhin
and Gladkov [70] first used the method of series termination to consider the reverse problem of two- and
three-dimensional, nonviscous, axisymmetrical, nonradiative flow around blunt bodies. In this approxima-
tion, the independent variables, stream functions, and density p are first expanded in power series with
respect to a longitudinal cylindrical coordinate £ or with respect to trigonometrical functions of an angle.
Substitution of this series in the defining differential equations in partial derivatives and in the combination
of terms with identical powers in £, gives the differential equations with the common coordinate 7 as the
independent variable. Termination of a series at a defined order gives a closed system of equations which
is solved numerically. In [71] and [72] this method is applied to viscous flow and nonequilibrium reacting
flows respectively. Conti [72] found that if the pressure and not the density is expanded in power series,
then the accuracy at each termination increases significantly. Van Dyke [73] was able to achieve a sig-
nificantly higher accuracy by means of a second-order termination, using the pressure as the main variable
and also £2/(1 + £% as the variable of the expansion instead of ¢ and by substituting ¥ for . Cheng and Vin-
centi [74], having closely adhered to van Dyke's scheme, extended the method to the problem of radiative
viscous flows around blunt bodies.

However, in all the above-mentioned cases the series are terminated arbitrarily at a higher order
but only in order to reduce the number of variables. In this case, the magnitude of the missing terms is
just as great as the terms retained, The author of [75] showed that if the equation of momentum is replaced
by Bernouil's equation, the the higher-order terms in each termination become velocity components normal
to the body or to the shock wave. As these terms are in reality very small in the case of supersonic flows,
it is possible to use order-of-magnitude analysis. It was shown that if other terms of the order of the dis-
carded terms also are missing, then an analytic solution can be obtained in certain cases even up to the
third order, The basis of the theory of perturbations of elliptical equations has been discussed recently
from the mathematical point of view by Ton [76] and Eckhans and de Jager [77].

2. Methods Associated with the Solution of Integral Equations

The maximum utilization of methods associated with the solution of integral equations is related to the
theory of heat transfer with radiation. This is because the equations of transfer for radiative flow, accord-
ing to their internal nature, are formulated as integral—differential equations which, in certain general
cases, reduceto integral equations. Some noteworthy reviews have appeared recently on heat transfer with
radiation, [78] and [79], which describe the present-day advances in the field of mathematical methods using
these integral equations. A detailed account of these methods can be found also in [80, 81, and 82], where
at the same time certain very controversial mathematical methods are considered for obtaining precise so-
lutions of the equations of heat transfer with radiation in special cases.
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In cases of radiant exchange between series of surfaces or series of diffusion cavities from igsother-
mal surfaces and a nonuniformly distributed flow, the problem of finding the temperature distribution is
reduced to the solution of an integral equation of the Fredholm type. Variation methods of solution in this
case are discussed in a review by Sparrow [83] and Howell and Siegel [84]. Methods of solution usually in-
clude numerical integration, the use of approximate factorization of kernels, approximate solutions of vari-
ation methods and expansion in Taylor series. Detailed information relating to this can be obtained from
[86-90]. Carrier [85] considered two approximate methods, namely the method of kernel substitution and
the method of integral equations of a boundary layer, which are particularly suitable for integral equations
in the case of transfer with radiation.

In view of what has been said above, we shall not attempt to discuss further the problem of radiation
in the form that it becomes in the formulation of integral methods. However, we shall present certain ex-
amples in which differential equations and partial derivatives were converted to integral equations in order
to use existing methods for solving these equations,

Boley [91] transformed the differential equation of thermal conductivity into partial derivatives in the
region of melting or solidification into an integral —differential equation, the solution of which is in the form
of series. Koh and Hartnett [92] reduced the equations of momentum and energy for laminar flow at the sur-
face of penetration with suction to ordinary integral equations which were solved numerically by the itera-
tion method. The same approach was used by Eckert et al. [93, 94] for a two-component boundary layer at
a surface with temperature-dependent physical properties. Tolubinskii {95, 96] gave a very general meth~
od of solving the integral equations on the assumption of a finite rate of diffusion. Assuming that the solu-
tion of the problem for infinite space is known, the corresponding solution for any region can be constructed.
Grinchenkov and Ulitko {97] reduced the problem of an established temperature distribution in a semi-in-
finite medium when its surface is maintained at a temperature of zerobut adisc 0 <r <goraringa<r
<b is maintained at constant temperature, to Fredholm's integral equation of second order. Vasilevskii
[98] reduced nonlinear parabolic equations of combined heat and mass transfer under nonsteady-state con-
ditions and with boundary conditions of the first order, to a system of two ordinary integral-differential
equations, using Boltzman's similarity transformation and he obtained approximate analytic solutions of
these equations, Patankar [99], using a two-parameter profile for temperature, reduced the analysis of
heat transfer through turbulent boundary layers with a temperature discontinuity at the wall to integral equa-
tions in order to determine the parameters in the profile. These integral equations were solved for a lam-
inar velocity profile, a velocity profile varying according to a "seventh power" law and according to some
law at the wall by Spalding [100]. Savino and Siegel [101] introduced integral equations for the temperature
distribution in a solidifying layer formed in a hot liguid moving along an isothermal cold surface and com-
pared his results with an earlier variational solution of this problem,

Lighthill {102] suggested a new method based on singular differential equations of the Volterra type
for heat transfer in boundary layers at a surface whose temperatures varies along its length, This meth~
od subsequently was used in many other applications and therefore can be justly called the Lighthill-Vol-
terra method. Using linear approximation for the velocity near the surface in a laminar boundary layer

A+ T (%) Y/, (32)
Lighthill showed that the magnitude of the local heat transfer at the wall is
13 1/2 i
Q, () = —K E_) [t, (0)]" g VT
® f( ae | T [v, @)] Pz |a T, (x1) |, (33)

where Tg(x) = Ty (x) — T, and the integral in the equation given above is the Stieltjes integral in the sense

x X

(it x0dg)=F0, )gO)+ [ 0g @)t (34)

0 0
Formula (33) for heat transfer is, by its nature, approximate for high Prandtl numbers. With increase of
o the thermal boundary layer becomes thinner by comparison with the velocity boundary layer and there-
fore the linear approximation for the velocity becomes even more and more precise. Lighthill noted that
in the stated formula u and p appear only in the form of a derivative. If this derivative is a constant, then
the solution of Eq. (33) for the law of velocities satisfies all Mach numbers., Thus, for a plane plate, where

3 . 1/2
T, (x) =332 (Lz‘“’ ) , (35)
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formula (34) is simplified to

Q, (9) = 330 KL 612 (upu )2 x—”“S 2 gy —e Twl® 40 (36)
W : dx,
0

The same equation was derived by Rubesin and Inouye [103], by means of separation of variables. Tifford
[104] suggested a procedure for applying Lighthill's method to a boundary layer with a pressure gradient by
introducing into Eq. (33) a quantity which takes into account the pressure gradient, An important contribu-
tion for improving the accuracy of Lighthill's method and its application to a boundary layer with a pressure
gradient was made by Spalding [{105], Liepmann [106], and Davies and Bourne [107]. This method is ex-
tended by Illingworth [108] and Lilley [109] to compressed boundary layers with a pressure gradient and
heat transfer. A brief assessment of these methods is given by Curle [110].

Lighthill's integral relations were applied [111-115] to chemically active boundary layers with reac-
tions at the surface, A precise solution of the integral equation was obtained only for a plane plate in [111,
112}. Frank-Kamenetskii [113] obtained the results of numerical integration of the equation for reactions
of orders of 0.5 and 2.

Chambre {116] and Mann and Wolf [117] reduced the solution of the problem of heat conductivity in a
semi-infinite solid body with nonlinear boundary conditions to a similar type of integral Volterra equation.
The reverse problem of heat exchange was reduced in [118, 119] to the solution of a singular integral equa-
tion of the Volterra type, A similar integral equation, describing the effect of a catalysis discontinuity at
the surface in the flow of a layer of dissociating gas, was solved by the method of expansion in series, and
also numerically in [120], Perel'man [121] showed that the solution of the conjugate problem of heat trans-
fer between the surface and the flow of a boundary layer can be reduced to the solution of these equations.
The general theory of conformal equations is considered in detail by Mikhlin [87] and Muskhelishvili [88],

The solution in the form of series in equations of the above-mentioned type has normally a small ra-
dius of convergence and is suitable only for small values of the argument, The main difficulty in solving
equations of this type for a large or moderately large argument is that the asymptotic form of the solution
cannot be substituted directly in the equation, because it is necessary to consider the contribution of the
integral near the lower limit, Thus, it is obvious that in these equations the asymptotic solution for x— «
depends on the behavior of the solution near the origin of the coordinates, Therefore, these equations nor-
mally are solved by numerical methods. Perel'man [121, 122] produced a method based on Mellin's trans-
formation for finding asymptotic solutions in linear singular integral equations of the Volterra type. Kumar
[123] used this method in solving the conjugate problem of heat transfer in a laminar boundary layer above
a porous plane plate with air injection, It should be pointed out that the Perel'man method is not applicable
for obtaining a solution close to the origin of the coordinates and the essential aspect of this method, namely
transformation of the functional equation for the Mellin transformant £(S) to another transformant f,(S), where
£,(8) is regular in 8 >0, is not uniquely possible.

Recently, Kumar and Bartman [124] used a new method for the asympfotic solution of these equations
close to the origin of the coordinates and for large values of x, This method was developed by Kumar [125]}
and is applied to the solution of various problems in nonlinear thermal conductivity and surface chemical
reactions in compressed boundary layers. It is illustrated below in the solution of Lighthill's problem [102]
for finding the radiative—convective equilibrium temperature distribution in such a way that the energy
emitted from the plate, in accordance with the Stefan —Boltzman law, is balanced by the incoming thermal
flow. Using Lighthill's integral relation [102], the problem is reduced to solution of the equation*

z

Fol-— s { %(7“—_”’2—1,—]7 F (@) =~ (), 37)
where
F(2) =T@IT,. (38)
Equation (37) must be solved with the boundary conditions:
F(0)=1, (39)
F (c0)—0. ’ (40)

*We have introduced certain refinements into the discussion of the example (editor).
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Using Abel's transformation formula and integrating with the use of Eq. (39), we can write

V3 ¢ o) dy )

o (R APPR
0

D@E)=1—F@) =

Formally, Mellin's transformation Eq. (41) can be written as in [126]

29 = M@=Y3 5 [ —2-s 4|wren )
n 3 3 3 ,

where the symbol M[F] denotes Mellin's transformation S F(z)zS‘idz of the function F(z). If we assume
0

that
D)~ E Az, 20 (43)
n=1}
F(@=Y B,z 2>, (44)

n=]

then, in accordance with the principle of analytic continuation for Mellin's transformation {127, 124, 129],
the poles and residues of both parts of Eq. (42) must be expressed by Ap, @ By, b. This should give us
a system of equations for the set of unknown parameters in Eq, (43) and (44). Now, by performing analytic
continuation of the common band of analyticity D of both parts of Eq. (42) (this band is defined as the region
of absolute convergence of the defining Mellin integral) and equating in both parts of Eq. (42) the consistent-
ly occurring values of the poles and residues, we also obtain the same system. Thus, continuation of D in
the left-hand half-plane in matching the form of the first pole in both parts of Eq. (42) determines ¢ = 1,
after which comparison of the residues in successive poles S = —a, —2a, ... leads to concurrent rela-
tions for A;. Thus, we have
ory
T TEB)TGR)
o= —2@ 44A,~ —7.252,
I'(2/3)T(3)
2T (10/3)
YT @3)rEe)

)

(647 —44,) 46.46,

So that when z — 0

F(2) =1—1.4612 -+-7.25222—46.46%L - - - (45)

In order to obtain the solution for large values of z we perform the analytic continuation of D to the
right. Thus, we find b = 1/4 and

Bi=1/2,
4B, L LCAILOO 5
L T (1/2)

1 TeRres),
2 r@my
L r@3rae) ,
2 T'(1/6)

4B, B} -+6B3B; =

4B,Bl+12B,B,B}+4B3B, =

3
giving
 F(2) =0.84092""*— 0.15242z7'”—0.1957**--0.00382 " +- . . . (46)

The solutions of Egs. (45) and (46) are exactly the same as obtained by Lighthill [102]* by quite complex
analysis of a series of integral values. It should be noted that the application of Abel's transformation

*Strictly speaking, in what follows after the extracted terms of the expansion (46), the coefficients Bp be-
come functions of z — polynomials of Inz. This question is discussed in the paper by Perel'man, Bartman,
and Levitan [129] and is there compared with the numerical results (editor).
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formula to Eq. (37) and integration, in order to include the boundary condition (39) in the new integral
equation (41), are important aspects in this present method, which takes account of the dependence of the
solution for large values of z on the solution for z — 0. Kumar [125] showed that this method can be ap-
plied to a large number of problems and analytical results can be obtained where, until recently, only nu-
merical solutions were available. In addition, Kumar [128] applied this method to a boundary layer
of dissociating gas with disruptive catalysis at the wall and obtained analytic solutions, which coincide well
with the precise numerical results of [120].

NOTATION

is the external expansion;

vt is the internal expansion;

Ve is the combined expansion;

¢ is the dimensionless coordinate along the body (Eq. 6);

7 is the dimensionless coordinate, normal to the body (Eq. 5);
C is the Chapman -Rubesin constant = pu/peue;

P is the density;

u is the velocity along a direction;

f is the self-similar variable (Eq. 7);

rg is the radius of the axisymmetrical body;

j is the suffix of rg, j = 0 for two-dimensional flow and j = 1 for axisymmetrical
flow;

T is the temperature;

Cp is the specific heat at constant pressure;

o is the atomic concentration;

agg = €y + CoT is the equilibrium atomic concentration;

T is the Damkohler number;

w is the bulk dissociation;

H is the total enthalpy (Eq. 11);

hp is the energy of dissociation per unit atomic mass;
r=r@+Dy

D = hp(ae — aEQ,w)/ep(Te — Ty);

a = al, ) - aggm;

Q = (T1/%);

X is the flow function;

-

wX = u(au/ay)y=0 is the surface friction at the wall;

M is the coefficient of friction;

Qw (%) is the thermal flux at the wall;

(o) is the Prandtl number;

T, is the temperature of main stream;

Kf is the thermal conductivity of fluid;

Ugo is the free flow velocity;

S is the parameter for Mellin's transform;

r is the gamma function;

B is the beta function.
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