
M O D E R N  A N A L Y T I C A L  M E T H O D S  IN H E A T  T R A N S F E R  

I .  J .  K u m a r  UDC 536.24 

A review is made of cer tain analytical methods used in heat t ransfer .  Singular perturbation 
methods, asymptotic methods, and methods associated with the solution of integral equations 
are  considered for the purpose of solving problems in various types of heat t ransfer .  

In the excellent monographs [1-7], the achievements in the various fields of heat t ransfer  are con- 
s idered f rom the physical  point of view in a sys temat ic  and unique way. An attempt is made in this present  
review to general ize these achievements f rom the point of view of mathematical  methods. It should be em-  
phasized that some of the most important  methods in the cur rent  l i terature on heat t ransfer  are still in the 
process  of development and examples f rom the l i terature  are quoted frequently in order  to show the virtue 
of the method in those branches of heat t ransfer  where it can be considered as a potential means of obtain- 
ing a solution. Therefore ,  in considering a specific method, it is desirable to cite examples f rom the cu r -  
rent l i tera ture  based on physical  considerations.  We also t ry  to cite, wherever  possible, re ferences  to 
fundamental works connected with the development of methods, for which the author does not make any 
claims on the completeness of the review in view of the enormous volume of existing l i terature.  The c r i -  
ter ia  for selecting examples is to show how a specific method has been applied in problems associated with 
the various types of heat t ransfer .  However, in view of their  being general ly well known, there will be no 
need to r e fe r  in this review to integral methods, to which the review [8] is devoted, or to a descript ion of 
their  application to nonsteady-s ta te  heat t ransfer  [9]. In a s imi lar  way, there is no need to re fe r  to c las -  
s ical  methods of operational calculus, which is used widely in c lass ica l  works [10-12]. We shall consider  
in some detail perturbation methods, asymptotic methods, and methods associated with the solution of in- 
tegral equations. 

1. P e r t u r b a t i o n  M e t h o d s  

Perturbat ion methods consist  mainly of the ser ies  expansion of dependent variables with respect  to 
powers of known value, assumed to be small .  When this small  quantity is a parameter ,  the method is known 
as T~parametric per turbat ion" and if it is a coordinate the method is called "coordinate perturbation, rT As- 
suming that this smal l  quantity is equal to e, the solution of the differential equation for  e ~ 0 is a solution 
of zero  order .  When the expansion is inserted in a differential equation and identical powers of e are equa- 
ted, we obtain a sys tem of differential equations for  solutions of success ive  orders .  The se r ies  obtained 
is convergent  in the asymptotic sense [96] and if the scheme mentioned above is suitable, then it is called 
a regular  perturbation.  This method was used in a number of problems and has led to very  useful resul ts .  

However, in many problems the ratio of success ive  terms ceases  to be small  and the sys tem of regu-  
lar  perturbation becomes untenable in a cer tain region of the flow field. Thus, it is impossible to obtain 
a valid solution over the whole flow field by the method of regular  perturbation. These problems are known 
as problems of singular perturbation.  

Sometimes the situation described above ar ises  because of the presence of singulari ty in a solution of 
zero  o rder  at a point or  on a line in the  region of investigation. This singulari ty becomes g rea te r  accord-  
ing as the order  of the solution increases .  A procedure  for  solving such problems by the perturbat ion meth-  
od was proposed in [13], according to which a dependent variable v(x, e) and an independent variable x are 
expanded in powers of low value in a se r ies  of the form: 
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v = v(0 ) (x) + 8 v(1) (~) + 83 v(,) (z)  + . . . .  

x = x + ~ x(,) (~) + ~* x(~) (x) + . . . .  

where X replaces the initially independent variables  x, and v(0)(X) is s imply a solution of zero  order  of the 
c lass ica l  method of perturbation with ~( instead of x. The method is descr ibed in [14] with various applica- 
tions, where the author calls it the P o t n c a i r 6 - L i g h t h i l l - K u o  method, the the PLK method, because Kuo 
applied it to supersonic boundary layers .  The method is frequently called the method of deformed coordi -  
nates (see, for  example, Chapter VI of [17] where many examples are  given of the application of this meth-  
od in aerodynamics) .  Lighthiil [18] applied this method to conical shock waves in a s teady-s ta te  supersonic 
flow. In [19, 20] it is applied to a supersonic s t reamline  flow around a profile. The limitation of this meth-  
od is shown by Lighthill [21] himself, who finally recommended the use of the method only in hyperbolic 
equations. This method is used in [22, 23] for  formulating the cor rec tness  of the solution to the problem 
of temperature  distribution in floating bodies using the integral method by Morris  [24] to obtain a uniformly 
convergent solution of laminar  convective flow in a heated ver t ical  tube rotating round a paral lel  axis. 

Olstad [25] considered the problem of radiative flow at the point of interruption as a perturbat ion oc-  
curr ing without emission.  He found that near  the wall, the method of regular  perturbation is inapplicable 
and he used the PLK method for obtaining a homogeneous solution. 

If the leading derivative of the differential equation contains a small  parameter ,  then the PLK method 
is inapplicable. The main difficulty in these problems appears because when e--* 0 the o rder  of the equa- 
tion is reduced and in this way certain boundary conditions may not be satisfied. A method was developed 
in [26-29], known under the name of nmethod of combined asymptotic expansions." 

Suppose v(x, e) is the solution of the problem of singular perturbation. The general  asymptotic ex- 
pansion in powers of e when e -,- 0 is called an external expansion for a fixed value of x > 0. This expan- 
sion is valid over the range y _< x <_ I with y independent of e. The expansion can also be fulfilled for y <_ x 
<- 1, even if y depends on e and approaches zero,  when e-~ 0 for  the condition y /e -~  oo (Erdelyt [30]). Sup- 
pose the external expansion be denoted by v ~ In o rder  to obtain the internal expansion, the expanding t r ans -  
formation x = ze is introduced. The asumptotic expansion v(ze, e) for e-*  0 when z _~ 0 is fixed, is called 
the internal expansion and is denoted by v i. This expansion is valid for 0 <- (z = x/e) <_ A 1. It was shown 
by examples that the expansion is fulfilled in the region x/e = O(1). Thus, the internal and external expan- 
sions have a common region of applicability and in this region we can write the internal expansion of the ex- 
ternal expansion v ~ i . e . ,  (v ~ and the external expansion of the internal expansion, i . e . ,  (vi) ~ The a s y m p -  
totic principle of combination [17] establishes that 

the m-th t e rm of the internal expansion (n-th t e rm of the external expansion) = n-th 
te rm of the external expansion (m-th t e rm of the internal expansion). 

(3) 

Here, m and n are any two whole numbers.  In pract ice ,  m is usually chosen as n or  as n + 1. The unknown 
constants in v ~ and v i are determined by the congruence of this pair  in the common region. Sometimes,  
combined expansions v c are  formed in order  to obtain a solution whichis homogeneousover the whole range 
0 <_ x <_ 1. v c can be formed either according to the law of additivity 

vc = v o + vz - -  (v~ (4a) 

or  according to the law of multiplicatlvity 
v c = v o v~ / (vO) i ,  (4b) 

as discussed in detail in [17]. 

Lam [31] considered the internal and external expansion of the boundary layer  at the walls of super -  
sonic nozzles in the case of a special  relation between the interaction of heat t ransfer  and the boundary 
layers  with ve ry  favorable p ressu re  gradients.  This method was used in [32] to obtain a uniformly converg-  
ing solution of laminar  flow in a homogeneous porous channel with a large (air) injection. The method of 
extension of internal coordinates is used in [33] in order  to obtain the internal solution of the problem of 
natural  convection over a flame. Mueller and Malmuth [34] considered the tempera ture  distribution in a 
radiating heat shield with a random aerodynamic source  and longitudinal thermal conductivity. Whilst the 
problem for small  radiation reduces to the problem of a regular  perturbation, the problem for low conduc- 
tivity is a problem of singular perturbation for  which the method of combined asymptotic expansions was 
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used. It is shown in [35] that the solution of the d imensionless  equation of a boundary layer  descr ib ing  the 
f r ee  convection of a radiat ing (sulfur) liquid is i tself  a p rob l em of s ingular  per turbat ion.  Burgraf f  [36] 
cons idered  v iscous  flow of a t r anspa ren t  l ayer  as an approximated  model of a shock layer .  In the case  of 
constant  density,  he obtained a p r ec i s e  solution and explained the interact ion between the viscous  and non- 
viscous  regions by cons ider ing  the asymptot ic  expansion of the above-ment ioned solution with r e spec t  to 
values of the Reynolds number .  Then he conver ted to the construct ion of a solution of the genera l  case  
by means of the method of combined asymptot ic  expansions.  Inger  [37] applied this method to the analysis  
of d issocia t ing  boundary l aye r s  c lose  to equil ibrium. We shal l  d iscuss  this pape r  is some detai l  in o r d e r  
to i l lus t ra te  the method. 

Let us cons ider  the flow in a boundary l ayer  close to equi l ibr ium of a d issoc ia t ing  diatomic gas along 
an impe rmeab le  a x i s y m m e t r i e a l  or  two-dimensional  body which is e i ther  adiabatic or  has a uni form s u r -  
face t empe ra tu r e .  

If we introduce the va r i ab l e s  

and a s sume  t h a t P r  = 1, Le = 1, 
atomic concentra t ion in the f o r m  

y 

~1 = P~ u, ri~ (2~)-W: j' (PLY).) dy, (5) 
o 

ue ~ re dx, (6) 
0 

d~ =uef " =  ", ~ (7) 

and pp = coast ,  we can wri te  the equations of momentum,  inertia,  and 

ff' + U =  o, (8) 
aa 02cr a~ 

f ~ + On' - -  2~ f '  O-~ = ~ ~n (cr - -  C, - -  C2 T), (9) 

f OH O ~ H f, OH 
U~ + - -  - 2 ~  - -  = o .  ( l O )  0~12 O~ 

The total enthalpy H is re la ted  with the stat ic  t e m p e r a t u r e  and atomic mass  f rac t ion  o~ by the re la t ion  

1 u~ (f,/2. (11) H=cpT  +o~hD+-~ 

It should be noted that F --* 0 for  a chemica l ly  f rozen flow and F ~ ~ for  total equi l ibr ium. The boundary 
conditions have the f o r m  

f '  (,,o) = 1, cz(~, ,,o) = cz, = Cl + C2To, 

T(~, oo)= Te, (12) 

1 u~. H(~, oo)=H~=c v T e +%RD + - ~  

At the sur face  

f (0) = f '  (0) = 0, (13) 

T (~, c~) = T~ = const o~ OH (L 0) _ 0, (14) 
an 

/4 (L 0) = c v T~, + hD r (~, 0). 

For  a comple te ly  catalyt ic  wall  we also have 

a(~, 0 )=aEe ,  w = C  1 + C  aT w. (15) 

Thus, in Eq. (9) for  F ~ ~ (1,/F ~ 0) the leading der iva t ive  vanishes  and there fore  the p rob l em is a p rob -  
l em of s ingular  per turbat ion.  We can wri te  Eq. (9) and (10) by means  of the new independent va r i ab les  ~,  
G, a n d F  

fO~ +O~ O~ F~R ( ~  DG ) 
_~_ _ ~  + 2~f' O-~- = i + - D  - -  (fcz~Q + aEQ), (16) 
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with the boundary conditions 

[ 0q 0 ~ G 06 
+ ~ -2~f' - -  = o 

O~ ~ O~ 

E(~, ~ )  = 0, 

~(~, 0) =0  (fo~ a catalytic wall), 

noting that the t empera tu re  profi le  can be represen ted  as 

T (i, ~1) = TeQ(~I) + c; ~ (qhD--aho). 
It follows f rom Eq. (17), therefore ,  that 

G(~, n)=O. 

(i7) 

(18) 

(19) 

(20) 

(21) 

An internal expansion can We consider  Eq. (16) for  a flow approaching equilibrium, where  r is v e ry  large.  
be assumed, therefore ,  for  

O (1 + D)-iG = 2 ~ r  (~1) ( r~ )  - " .  (22) 
N = !  

Substituting Eq. (22) in Eq. (10,  using Eq. (17) and collecting t e rms  with identical powers,  we find the fol-  
lowing equations defining the perturbat ion functions 

~z(l) (TI) =/~aeQ+ CZeQ= r (0)if" 01)/A] ~, (23a) 

~- (~zr +2Rf ~zo), (23b) 

- - 0  - - 0  , - -  0 , ,  - - 0  a(,v) (~1) = f(czOv-l)) + (r -l-2R (N--l)cz(,v-i), (23c) 

where  Eq. (20) was used to simplify the r ight-hand side of Eq. (23a). Although Eq. (22) sat isf ies  the ex- 
ternal  boundary condition (18), it does not sa t is fy  the internal boundary condition (19). There fore ,  we shall 
attempt to obtain a solution in the vicini ty of the walt in t e rms  of the compress ion  by means of the var iable  
Q. It follows f rom Eq. (16) that the corresponding compress ion  can be obtained if we put Q = (Flfi~?). 

In o rde r  to obtain the internal  solution in t e rms  of the new independent var iable ,  we f i r s t  of all r e -  
wri te  Eq. (16) in t e rms  of the new independent var iable  Q = rl/2~?. Thus, we obtain the equation 

O~r + AQ 2 [ 2BQS I Ocz 2~AQ [1 5BQ3 ~ d~z 
2 - ~  \ l -  j r-~- ~ - ~ ] AF 3 OQ O~ 

=~R[ DQ r-'/2 ~ ] ~z D6(b  0) 0q(~, 0) ( _0)" 
IWD I + D  OB ' (24) 

which is satisfied by the boundary conditions at the walt (19). Equation (24) is now solved for  condition (19). 
If we assume that 

2 = acN) (~, Q)r - rN,  (25) 
N = I  

then substitution of the se r i e s  (25) in Eq. (24) gives a sequence of l inear  second-o rde r  differential  equations, 
defining the internal perturbat ion functions. Solving these equations, we obtain 

a~i) (~, Q) = E1 sinh (~ ~ Q), (26a) 

L~ L~ 
a~) (~, Q) = E, sinh (~ ~ Q) -t- ~-~r (0) [ l - -  exp (--~ 2 Q)I, (26b) 

L~ 
l a(3) (~, Q) = E~sinh(~2 Q), (26c) 

are  a rb i t r a ry  constants.  Now we match this internal  solution with the external  solution where El, E 2 . . . .  
by means of the principle of asymptotic combination which is given by the rule  (3). 

F r o m  Eq. (21), (22), and (23) we have the external  solution for the atomic concentrat ion 

(27) ~o(~, ~) = [~Q (0)/(r~)] [r' (0)/A]2+ o(r- ,~-%, 
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which, rewr i t ten  in t e r m s  of the internal  va r iab le  Q and expanded for  l a rge  values of F using the fact  that 
f"(0) = 0, a s sumes  the fo rm 

~ (Q, ~) ~ ~ Q  (0) ( r ~ ) - l +  o (r-2~-2R). (28) 

F r o m  Eqs. (25), (26a), (26b), and (26c), the cor responding  internal solution is 
LR LR 

K~ (Q, ~) = E,r-,/2sinh (~2 Q) + E2F-Xsinh (~ 2 Q) 

1 R 
+ F-x~--~aEQ (0) [1-- exp (--  ~ 2 Q)] -3/z �9 v R . + E~F smh (~ Q) + 0 (F-~), (29) 

which, in t e rms  of the internal  va r i ab le  for  l a rge  values of F is exp re s sed  as 
1 1 

sinh (n~T~r '/~) x~eNr- r ,  ~ eNr 
~ (% ~) = N (30) 

LR 
(F~R) -~ cr (0) [1-- exp (_~2 Q)], EN =0. 

Neglecting exponential ly smal l  t e rms ,  Eq. (28) and (30) will be combined if E 1 = E 2 = E N = 0. The final 
internal  solution for  a catalyt ic  wall  is: 

~zll ) (Q, ~) =0, (31a) 
! 

~ )  (Q, ~) = a;q(O) ~-~[1-- exp (--  ~ ~-RQ)], (31b) 

~ }  (Q, ~) = 0. (3 lc) 

Knowing that f is the solution of the Blasius  equation, we de te rmined  the uniformly c o r r e c t  solution 
compr i s ing  Eq. (23) and (31). 

Ellinwood [38] used a pa i r  of combined asymptot ic  expansions in o rde r  to obtain solutions for  s u p e r -  
sonic flows pass ing  through shock l aye r s  fo rmed  around a blunt, na r row cone or a wedge. In [39] the p rob-  
l em of heat t r a n s f e r  f r o m  a heated s t a t ionary  sphere  in a fluctuating flow is studied. 

The solution of the bounda ry - l aye r  equations for  la rge  values o f t h e p r e s s u r e  gradient  p a r a m e t e r  gives 
one fu r the r  example  of the p rob lem of s ingular  per turbat ion.  This was mentioned by Coles [40] and l a te r  
by  Bekweth and Cohen [41]. Fo r  a detailed discuss ion,  see L a g e r s t r o m  [42] and Dewey and Gross  [43]. 

The flow in a l am i na r  two-dimensional  boundary l ayer  with radiat ion is analyzed by Novotany and Yang 
[44]. They assumed smal l  t empe ra tu r e  d i f fe rences  inside the flow field. By consider ing an optical ly thin 
approximat ion they enoountered the p rob lem of s ingular  per turba t ion  of the energy  equation. This p rob lem 
was analyzed by combined asymptot ic  expansions with r e spec t  to a p a r a m e t e r  defining the optical  thickness 
of the gas.  

Fendell  [45] used the s ame  method in solving the p rob lem of l amina r  natural  convection around an i so-  
t he rma l ly  heated sphere  for  a smal l  Grasshof  number .  The p rob lem of dynamical ly  s i m i l a r  c o m p r e s s e d  
boundary l aye r s  with a la rge  injection and with a suitable p r e s s u r e  gradient  was cons idered  by Kubota and 
Fernandez  [46], who obtained combined asymptot ic  expansions for  each of two l aye r s :  a) the inner layer ,  
adjacent to the su r face  where  v i scos i ty  is important  and b) the outside boundary layer  at which t r an s f e r  
takes place f rom the inside l ayer  to the outside flow. Start ing f rom the method developed prev ious ly  in 
[34], Mueller  and Malmuth [47] d iscussed the approximate  solution for  the rma l  conductivity and radiat ing 
shells  re la t ing  to a d i s c r e t e  s o l a r  flow. Kueken [48] applied this method to a f ree -convec t ion  boundary 
layer  for  the case  when the Prandt l  number  tends to zero .  

V a s i l ' e v a  [49] justif ied Lhe method of finding the equi l ibr ium solutions of a s y s t e m  of different ia l  equa-  
tions containing a smal l  p a r a m e t e r  as the leading der iva t ive .  Using this method, V a r m a  and Murgai [50] 
obtained an analytic solution of the p rob l em of natural  convection above jets  containing solid pa r t i c l e s .  A 
detailed l ist  of invest igat ions by Soviet mathemat ic ians  and sc ien t i s t s  into the mathemat ica l  theory of p e r -  
turbation methods is given in [49]. 

In the paper s  mentioned below, some bas ic  theor ies  were  d iscussed  of s ingular  per turba t ion  methods,  
which are  of definite in te res t  for  application. The following p rob lem is investigated in [51]: we cons ider  
the genera l  different ial  equation of m- th  order ,  depending on the p a r a m e t e r  e in such a way that its o rde r  
has been reduced to n when e ~ 0. Although the s t a r t ing  equation includes m boundary conditions, the 
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der ived equation may contain only n boundary conditions. Thus,  in the l imit  e--* 0, m - n conditions a re  
lost  but we wish to de te rmine  how each of them is lost. The conditions were  obtained which guarantee  that 
the solution v(x, ~) exis ts  and also is a homogeneous asymptot ic  expansion. 

This method was recen t ly  c r i t i ca l ly  examined by Franke l  [52], where  sa t i s f ac to ry  conditions a re  
s t r i c t ly  substant ia ted for  which the van Dyke principle of asymptot ic  combination [17] is valid.  He applied 
this method to a normal  different ial  equation with a r e v e r s a l  point and showed that the bounded principle of 
combination is valid, even when it is applied to t r immed  internal  and external  expansions which do ac t  span 
the o rde r  of the t e r m s  n e c e s s a r y  for  combination.  

The method of multiple sca les  is developed by Cochran [53] and Mahony [54]. In their  solutions the 
sens i t ive  coordinate  was taken up by a pa i r  of coordinates ,  thus increas ing the number  of independent v a r i -  
ables.  It was then assumed  that the genera l  asymptot ic  expansion is homogeneous over  the entire region.  
Consequently, the need for  combination was removed.  A s i m i l a r  idea was put forward  in [55]. These  con-  
s idera t ions  were  developed in [56]. A s i m i l a r  method, called the method of in te rmedia te  l imits ,  was de-  
sc r ibed  by Kaplun [29, 57]. Other important  r e f e rences  a re  [58-68]. 

Per turba t ion  methods are  only par t ia l ly  applicable in el l ipt ical  flow p rob lems .  

In the case  of p rob lems  in which the expansion of a power s e r i e s  is r ep resen ted  in a different ial  equa-  
tion, it is found that an equation of n-th o r d e r  contains t e r m s  of (n + 1)-th o rde r .  This case  is con t ra ry  to 
the case  of parabol ic  equations, where  equations of n-th o rde r  contain t e r m s  of up to the n-th o rder ,  as in 
the case  of the Blasius expansion in bounda ry - l aye r  theory. It is important ,  therefore ,  somehow to t e r -  
minate the s e r i e s  at t e r m s  of defined order ,  so as to match the number  of unknowns with the number  of 
equations. This method is some t imes  called the method of s e r i e s  te rminat ion  [75]. Swigart  [69] and Bazzhin 
and Gladkov [70] f i r s t  used the method of s e r i e s  terminat ion to cons ider  the r e v e r s e  p rob l em of two- and 
th ree-d imens iona l ,  nonviscous,  ax i symmet r i ca l ,  nonradiat ive flow around blunt bodies.  In this app rox ima-  
tion, the independent va r i ab les ,  s t r e a m  functions, and density p a r e  f i r s t  expanded in power s e r i e s  with 
r e s p e c t  to a longitudinal cyl indr ical  coordinate  ~ or  with r e spec t  to t r igonomet r ica l  functions of an angle. 
Substitution of this s e r i e s  in the defining different ial  equations in par t ia l  der iva t ives  and in the combination 
of t e r m s  with identical powers  in ~, gives the different ia l  equations with the common coordinate  ~ as the 
independent var iable .  Termina t ion  of a s e r i e s  at a defined o rde r  gives a closed s y s t e m  of equations which 
is solved numer ica l ly .  In [71] and [72] this method is applied to viscous  flow and nonequil ibr ium react ing  
flows respec t ive ly .  Conti [72] found that if the p r e s s u r e  and not the densi ty is expanded in power s e r i e s ,  
then the accuracy  at each terminat ion  inc reases  significantly.  Van Dyke [73] was able to achieve a s ig -  
nificantly higher accu racy  by means of a s e c o n d - o r d e r  terminat ion,  using the p r e s s u r e  as the main var iab le  
and also ~2/(1 + ~2) as the va r i ab le  of the expansion instead of ~ and by substi tut ing r for  ~7. Cheng and Vin- 
eenti [74], having c losely  adhered to van Dyke ' s  scheme,  extended the method to the p rob l em of radia t ive  
viscous  flows around blunt bodies.  

However,  in all  the above-ment ioned cases  the s e r i e s  a re  te rmina ted  a r b i t r a r i l y  at a higher o rde r  
but only in o rde r  to reduce the number  of va r i ab les .  In this case ,  the magnitude of the miss ing  t e r m s  is 
just  as g rea t  as the t e r m s  retained.  The author of [75] showed that if the equation of momentum is replaced  
by  Beraou i l ' s  equation, the the h i g h e r - o r d e r  t e r m s  in each te rminat ion  become veloci ty  components  no rma l  
to the body or  to the shock wave.  As these t e r m s  are  in rea l i ty  ve ry  sma l l  in the case  of supersonic  flows, 
it is poss ib le  to use o rde r -o f -magn i tude  analys is .  It was shown that if other  t e r m s  of the o r d e r  of the d is -  
carded  t e r m s  also a re  miss ing,  then an analytic solution can be obtained in cer ta in  cases  even up to the 
third o rder .  The bas i s  of the theory of per turba t ions  of el l ipt ical  equations has been d iscussed  recent ly  
f r o m  the mathemat ica l  point of view by Ton [76] and Eckhans and de Jager  [77]. 

2.  M e t h o d s  A s s o c i a t e d  w i t h  t h e  S o l u t i o n  of  I n t e g r a l  E q u a t i o n s  

The max imum  util ization of methods associa ted  with the solution of integral  equations is re la ted  to the 
theory of heat t r ans f e r  with radiat ion.  This is because  the equations of t r an s f e r  for  rad ia t ive  flow, accord -  
ing to thei r  internal  nature,  a re  formula ted  as i n t e g r a l - d i f f e r e n t i a l  equations which, in ce r ta in  genera l  
cases ,  r educe to  integral  equations. Some noteworthy reviews have appeared recent ly  on heat  t r a n s f e r  with 
radiat ion,  [78] and [79], which desc r ibe  the p r e s e n t - d a y  advances in the field of ma themat ica l  methods using 
these integral  equations. A detai led account of these methods can be found also in [80, 81, and 82], where  
at the s a m e  t ime cer ta in  v e r y  con t rover s i a l  mathemat ica l  methods are  cons idered  for  obtaining p r ec i s e  so -  
lutions of the equations of heat t r a n s f e r  with radiat ion in specia l  c a s e s .  
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In cases  of radiant  exchange between s e r i e s  of su r faces  or  s e r i e s  of diffusion cavi t ies  f r o m  i so ther -  
mal  su r faces  and a nonuniformly dis tr ibuted flow, the p rob lem of finding the t empe ra tu r e  distr ibution is 
reduced to the solution of an integral  equation of the F redho lm type. Var ia t ion methods of solution in this 
case  a re  d iscussed in a review by Sparrow [83] and Howell and Siegel [84]. Methods of solution usually in- 
clude numer i ca l  integration,  the use of approximate  fac tor iza t ion  of kerne ls ,  approximate  solutions of v a r i -  
ation methods and expansion in Tay lo r  s e r i e s .  Detailed information re la t ing to this can be obtained f rom 
[86-90]. C a r r i e r  [85] cons idered  two approximate  methods,  namely  the method of kernel  substi tution and 
the method of integral  equations of a boundary layer ,  which are  pa r t i cu l a r ly  sui table  for  integral  equations 
in the case  of t r a n s f e r  with radia t ion.  

In view of what has been said above, we shal l  not a t tempt  to discuss  fu r the r  the p rob lem of radiat ion 
in the f o r m  that it becomes  in the formulat ion of integral  methods.  However,  we shall  p r e sen t  cer ta in  ex= 
amples  in which dif ferent ia l  equations and par t ia l  der iva t ives  were  conver ted  to integral  equations in o rder  
to use exist ing methods for  solving these equations. 

Boley [91] t r ans fo rmed  the differential  equation of the rma l  conductivity into par t ia l  der iva t ives  in the 
region of melt ing or solidif icat ion into an i n t e g r a l - d i f f e r e n t i a l  equation, the solution of which is in the fo rm 
of s e r i e s .  Koh and Har tnet t  [92] reduced the equations of momentum and energy for  l amina r  flow at the s u r -  
face of penet ra t ion  with suction to o rd ina ry  integral  equations which were  solved numer ica l ly  by the i t e r a -  
tion method. The same  approach was used by Eeker t  et al. [93, 94] for  a two-component  boundary l ayer  at 
a su r face  with t empera tu re -dependen t  physical  p rope r t i e s .  Tolubinskii  [95, 96] gave a v e r y  genera l  meth-  
od of solving the integral  equations on the assumption of a finite r a t e  of diffusion. Assuming that the solu-  
tion of the p rob l em  for  infinite space  is known, the cor responding  solution for  any region can be constructed.  
Grinchenkov and Ulitko [97] reduced the p rob lem of an es tabl ished t e m p e r a t u r e  dis tr ibut ion in a s e m i - i n -  
finite medium when its su r face  is maintained at a t e m p e r a t u r e  of ze ro  but a disc 0 < r < a or  a ring a < r 
< b is maintained at constant  t empera tu re ,  to F r e d h o l m ' s  in tegral  equation of second order .  Vast levski i  
[98] reduced nonl inear  parabol ic  equations of combined heat and mass  t r a n s f e r  under nons teady-s ta te  con-  
ditions and with boundary  conditions of the f i r s t  o rder ,  to a s y s t e m  of two ord inary  i n t e g r a l - d i f f e r e n t i a l  
equations, using Bo l t zman ' s  s i m i l a r i t y  t r ans fo rmat ion  and he obtained approximate  analytic solutions of 
these equations.  Pa tankar  [99], using a t w o - p a r a m e t e r  prof i le  for  t empera tu re ,  reduced the analysis  of 
heat  t r a n s f e r  through turbulent boundary  layers  with a t e m p e r a t u r e  discontinuity at the wall  to integral  equa-  
tions in o rde r  to de te rmine  the p a r a m e t e r s  in the profi le .  These  integral  equations were  solved for  a l a m -  
inar veloci ty  profi le ,  a veloci ty  profi le  varying according to a "seventh power"  law and according to some 
law at the wall  by Spalding [100]. Savino and Siegel [101] introduced integral  equations for  the t e m p e r a t u r e  
dis tr ibut ion in a solidifying layer  fo rmed  in a hot liquid moving along an i so the rmal  cold su r face  and c o m :  
pa red  his r esu l t s  with an e a r l i e r  var ia t ional  solution of this p rob lem.  

Lighthill  [102] suggested a new method based on s ingular  different ia l  equations of the Vo l t e r r a  type 
for  heat t r a n s f e r  in boundary layers  at a su r face  whose t e m p e r a t u r e s  v a r i e s  along its length. This me th -  
od subsequent ly  was used in many other  applicat ions and the re fo re  can be just ly  called the L igh th i l l -Vo l -  
t e r r a  method. Using l inear  approximat ion for the veloci ty  nea r  the sur face  in a tam[nar  boundary l aye r  

u -~- "c~ (x) g/tx, (32) 

Lighthill showed that the magnitude of the local heat t r a n s f e r  at the wail  is 

)(/ Q~(x)=--K/(q~t ,  op .111/' [~cw (x)]t/2F (4/3) j '  [~cw(z)J1/2dz d T,(x,) , (33) 

0 \ x l  < 

where  Te(x ) = Tw(x ) - Too, and the integral  in the equation given above is the Stielt jes integral  in the sense  

S f (t, x) d e (t) = f (0, x) g (0) + ,i f (t, x) g' (t) dr. (34) 
0 0 

F o r m u l a  (33) for  heat  t r a n s f e r  is, by its nature,  approx imate  for  high Prandt l  numbers .  With inc rease  of 
cr the the rma l  boundary l ayer  becomes  thinner by compar i son  with the veloci ty  boundary l ayer  and t h e r e -  
fore  the l inear  approximat ion  for  the veloci ty  becomes  even more  and more  p r ec i s e .  Lighthtll noted that 
tn the stated fo rmula  p and p appear  only in the fo rm of a der ivat ive .  If this der iva t ive  is a constant,  then 
the solution of Eq. (33) for  the law of veloci t ies  sa t i s f ies  all Mach numbers .  Thus, for  a plane plate,  where  

3 , l / 2  
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fo rmula  (34) is s implif ied to 

Qw (x) = 339 K'---.--LI (II/a (ppu~)I/2x-I/4 ( (x3/4-- Xal/4) -1/3 dTu'(x) dxl: (36) 
~t ,J dxl 

0 

The same  equation was der ived by Rubesin and Inouye [103], by means of separa t ion  of va r iab les .  Tifford 
[104] suggested a p rocedure  for  applying LighthiII 's  method to a boundary  l ayer  with a p r e s s u r e  gradient  by 
introducing into Eq. (33) a quantity which takes into account the p r e s s u r e  gradient .  An important  contr ibu-  
tion for  improving the accuracy  of Lighthi l l ' s  method and its application to a boundary layer  with a p r e s s u r e  
gradient  was made by Spalding [105], Liepmann [106], and Davies and Bourne [107]. This  method is ex-  
tended by Il l ingworth [108] and Lil ley [109] to c o m p r e s s e d  boundary l aye r s  with a p r e s s u r e  gradient  and 
heat  t r ans fe r .  A br ie f  a s s e s s m e n t  of these  methods is given by Curie [110]. 

Lighthtl l 's  integral  re la t ions  were  applied [111-115] to chemica l ly  act ive boundary layers  with r e a c -  
tions at the sur face .  A p rec i se  solution of the integral  equation was obtained only for  a plane plate in [111, 
112]. F rank-Kamene t sk t [  [113] obtained the resu l t s  of numer ica l  integrat ion of the equation for  reac t ions  
of o rde r s  of 0.5 and 2. 

Chambre  [116] and Mann and Wolf [117] reduced the solution of the p rob lem of heat conductivity in a 
semi- inf in i te  solid body with nonl inear  boundary conditions to a s i m i l a r  type of integral  Vo l t e r r a  equation. 
The r e v e r s e  p rob lem of heat exchange was reduced in [118, 119] to the solution of a s ingular  integral  equa- 
tion of the Vo l t e r r a  type. A s i m i l a r  integral  equation, desc r ib ing  the effect  of a ca ta lys ts  discontinuity at 
the sur face  in the flow of a l ayer  of d issocia t ing gas,  was solved by the method of expansion in s e r i e s ,  and 
also numer ica l ly  in [120]. P e r e l ' m a n  [121] showed that the solution of the conjugate p rob lem of heat t r an s -  
f e r  between the sur face  and the flow of a boundary layer  can be reduced to the solution of these equations. 
The genera l  theory of conformal  equations is considered in detail  by Mikhlin [87] and Muskheltshvil i  [88]. 

The solution in the fo rm of s e r i e s  in equations of the above-ment ioned type has no rma l ly  a smal l  r a -  
dius of convergence  and is suitable only fo r  smal l  values of the argument .  The main difficulty in solving 
equations of this type for  a la rge  or  modera te ly  large argument  is that the asymptot ic  f o r m  of the solution 
cannot be substi tuted d i rec t ly  in the equation, because  it is n e c e s s a r y  to cons ider  the contribution of the 
integral  nea r  the lower limit.  Thus,  it is obvious that in these equations the asymptot ic  solution for  x--" 
depends on the behavior  of the solution nea r  the origin of the coordinates .  There fore ,  these equations no r -  
mal ly  a re  solved by numer ica l  methods.  P e r e l ' m a n  [121, 122] produced a method based on Melltn 's  t r an s -  
format ion  for  finding asymptot ic  solutions in l inear  s ingular  integral  equations of the V o l t e r r a  type. Kumar  
[123] used this method in solving the conjugate p rob lem of heat t r an s f e r  in a l amina r  boundary layer  above 
a porous plane plate with a i r  injection. It should be pointed out that the P e r e l ' m a n  method is not applicable 
for  obtaining a solution c lose  to the origin of the coordinates  and the essent ia l  aspect  of this method, namely  
t r ans fo rmat ion  of the functional equation for  the Mellin t r ans fo rman t  f(S) to another  t r ans fo rman t  f l (S) ,where 
fl(S) is r egu la r  in S > 0, is not uniquely poss ib le .  

Recently,  Kumar  and Bar tman  [124] used a new method for  the asymptot ic  solution of these equations 
close to the origin of the coordinates  and for  la rge  values of x. This method was developed by Kumar  [125] 
and is applied to the solution of var ious  p rob l ems  in nonlinear t he rma l  conductivity and sur face  chemical  
react ions  in compres sed  boundary l aye r s .  It is i l lus t ra ted below [n the solution of Lightht l l ' s  p rob lem [102] 
for  finding the r a d i a t i v e - c o n v e c t i v e  equi l ibr ium t e m p e r a t u r e  distr ibution in such a way that the energy 
emit ted f r o m  the plate,  in accordance  with the S t e f a n - B o t t z m a n  taw, is balanced by the incoming thermal  
flow. U s i n g  Lighthit l 's  integral  re la t ion [102], the p rob lem is reduced to solution of the equation* 

1 I f F' (zO dZl F' d 
iF (z)] 4 = __ 2 ~  j tz" 3/2.  z13/21'/3'.J (z) = ~ (F), (37) 

0 

where 

F (z) = T  (z)lrr. 

Equation (37) must  be solved with the boundary conditions: 

f (0) = 1, 

F (oo).--* O. 

*We have introduced cer ta in  re f inements  into the discuss ion of the example (editor). 

(~s) 

(39) 

(40) 
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Using Abel 's  t r ans fo rmat ion  fo rmula  and integrat ing with the use of Eq. (39), we can wri te  

�9 (z) = 1 - -  F (z) = 3]f3- Zl F4 (zl) dzl 
2~ ,J (zS/e z~/e)2/3. (41) 

0 

Formal ly ,  Mell in 's  t r ans fo rmat ion  Eq. (41) can be wri t ten as in [126] 

~ (S )=  M[@]=V'3B~ [ 23 32 S, + I M [ F ~ z - ~ ] ,  (42) 

where  the symbol  M[F] denotes Mell in 's  t r ans fo rmat ion  i F(z)zS-ldz of the function F(z). If we a s su me  
0 

that 

a i r  (1) (z) = ~ A,~z , z---~-O; (43) 
n = l  

F (z) ~ ~ B,~z -b'~, z ~ co, (44) 
n = l  

then, in accordance  with the pr inciple  of analytic continuation for  Mellin 's  t r ans format ion  [127, 124, 129], 
the poles and res idues  of both par t s  of Eq. (42) must  be expressed  by An, a; Bn, b. This should give us 
a s y s t e m  of equations for  the se t  of unknown p a r a m e t e r s  in Eq. (43) and (44). Now, by pe r fo rming  analytic 
continuation of the common band of analyt ici ty D of both pa r t s  of Eq. (42) (this band is defined as the region 
of absolute convergence  of the defining Mellin integral) and equating in both pa r t s  of Eq. (42) the cons i s ten t -  
ly occur r ing  values of the poles and res idues ,  we also obtain the s ame  sys tem.  Thus, continuation of D in 
the lef t-hand half -plane in matching the f o r m  of the f i r s t  pole in both pa r t s  of Eq. (42) de te rmines  a = 1, 
a f te r  which compar i son  of the res idues  in success ive  poles S = - a  , - 2 a ,  . . .  leads to concur ren t  r e l a -  
tions for  A n . Thus, we have 

A1 2F (4/3) 1.461, 
F (2/3) F (5/3) 

As =: --2F (2) 4A I = --7,252, 
r (2/3) F (3) 

A3 = 2F(10/3) (6A~--4A,,) ==46.46. 
F (2/3) F (3) 

So that when z ~ 0 

right.  

giving 

F (z) ~- 1-- 1.461z -+7.252z2--46.46z3+. �9 �9 (45) 

In o rde r  to obtain the solution for  la rge  values  of z we p e r f o r m  the analytic continuation of D to the 
Thus,  we find b = 1/4 and 

B 4-1/2, 

4B~B.= 1 F(2/3) F(5/6)= B1, 
2 r( t /2)  

3 2 2 1 F (2/3) F (2/3) By 4B3BI +6B2BI = 
2 r(1/3). 

4B~B~+12B3B2B~+4B~BI_~ 1 F(2/3) F(I/2) B3 ' 
2 r(1/6) 

F (z) = 0,8409z - ' / 4 -  O. 15242z-1/~--0.195z-3/4::--O.OO38z - j  + . . .  (46) 

The solutions of Eqs. (45) and (46) a re  exact ly  the s ame  as obtained by Lighthill [102]* by quite complex 
analysis  of a s e r i e s  of integral  values .  It should be noted that the application of Abel 's  t r ans fo rmat ion  

*Strictly speaking,  in what follows a f te r  the extracted t e r m s  of the expansion (46), the coefficients Bn be -  
come functions of z - polynomials  of lnz .  This question is d iscussed in the paper  by P e r e l ' m a n ,  Bar tman,  
and Levitan [129] and is there  compared  with the numer ica l  resu l t s  (editor). 
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formula to Eq. (37) and integration, in order  to include the boundary condition (39) in the new integral 
equation (41), are important aspects in this present  method, which takes account of the dependence of the 
solution for large values of z on the solution for z --* 0. Kumar [125] showed that this method can be ap- 
plied to a large number of problems and analytical results  can be obtained where, until recently,  only nu- 
mer ica l  solutions were available. In addition, Kumar [128] applied this method to a boundary layer  
of dissociat ing gas with disruptive catalysis  at the wall and obtained analytic solutions, which coincide well 
with the precise  numerical  results  of [120]. 

v 0 
v i 

Vc 

C 

P 
U 

f 

r B 
J 

T 
Cp 

aEQ = C 1 + C2T 

W 

H 

hD 
F = F(1 + D); 

D = hD(~ e - O~EQ,w)/Cp(T e 

= (~(}, ~) - ~EQ0?); 
Q (F1/2V); 

X 
~w(X) # (Ou/~y)y= 0 
P 

Qw (x) 
(7 

T~o 
Kf 
O ~  

S 
F 
B 

N O T A T I O N  

ts the external expansion; 
is the internal expansion; 
is the combined expansion; 
Ls the dimensionless coordinate along the body (Eq. 6); 
iS the dimensionless coordinate, normal  to the body (Eq. 5); 
is the Chapman-Rubes in  constant = pu/peUe; 
is the density; 
ts the velocity along a direction; 
Ls the se l f - s imi la r  variable (Eq. 7); 
is the radius of the axisymmetr ica l  body; 
is the suffix of rB, j = 0 for two-dimensional flow and j = 1 for axisymmetr tcal  

flow; 
is the temperature;  
ts the specific heat at constant pressure ;  
ts the atomic concentration; 
is the equilibrium atomic concentration; 
is the Damkohier number; 
ts the bulk dissociation; 
ts the total enthalpy (Eq. 11); 
ts the energy of dissociation per  unit atomic mass; 

~ 

Tw); 

ts the flow function; 
ts the surface friction at the wall; 
Ls the coefficient of friction; 
is the thermal flux at the wall; 
is the Prandtl  number; 
is the temperature  of main s t ream; 
ts the thermal conductivity of fluid; 
is the free flow velocity; 
is the pa rame te r  for  Mellin's t ransform; 
is the gamma function; 
LS the beta function. 
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